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Abstract—L-values have been widely adopted due to their
outstanding features in many scenarios of digital communication
systems, for instance, in channel decoders or in cooperative
relays, where in the latter L-values could be exchanged between
physically separated relays. However, an L-value is a real number,
and for this reason, it must be quantized before being processed
in any finite state machine. This irreversible process reduces the
mutual information contained implicitly in the L-value. Therefore
the quantizer must be designed carefully to jeopardize the mutual
information contained in the L-value as little as possible. In
literature, solutions for such a quantizer are proposed only for
systems considering AWGN channels. In this paper a new method
for the design of a quantizer of L-values is proposed which allows
us to consider systems with both AWGN and flat Rayleigh fading
channels. To this end, an optimized Lloyd-Max based quantizer of
L-values is developed. It is shown that the cost function suitable
for the Lloyd-Max algorithm can be designed in terms of the

information loss instead of the mutual information.
Index Terms—LLR quantizer, L-values, Lloyd-Max quantizer,

Mutual Information

I. INTRODUCTION

Soft information, such as Log-Likelihood Ratio (LLR) or L-

values [1], has been very useful in improving the performance

of channel coding in wireless communication systems. Also

in the field of cooperation, e.g., cooperative receivers and

cooperative relays, some schemes require the exchange of

L-values between computers. Therefore, L-values must be

quantized before any further processing stage in wireless

communication systems. Minimizing the mutual information

loss due to quantization given a certain compression rate is

the key point of quantizer design for L-values.

In prior studies, a quantizer for L-value is designed by

minimizing the expectation E[(L − L̂)2], L denotes the L-

value and L̂ refers to its quantzied version, assuming the

L-value as an independent variable [2], [3] only when an

AWGN channel is considered. Indeed, L-values at the receiver

are generated in terms of the conditional probabilities of the

system. Therefore, such a quantizer optimizes the distortion

of the L-values but neglects the information conveyed by the

source, which is implicitly contained in it but in a non-linear

fashion. Some other approaches take advantage of this non-

linearity feature in designing the quantizer for the L-values

[2], [4]. They make use of other non-linear functions with

similar saturation behavior as the mutual information has with

respect to L-values. Moreover, these quantizers are designed

only for L-values at low magnitudes in the interval [−a, a],

where | a | ≪ ∞ is an arbitrary number. Therefore, these

quantizers do not optimally preserve the mutual information

contained in the L-values and give only a local solution.

A more complex method is given in [5], where a quantizer

for L-values with the constraint of maximizing the mutual

information is designed. This method employs a steepest

ascent technique and strictly applies only to systems with

AWGN channels [5]. A new method is required for the case

when a flat Rayleigh fading channel is assumed.

In this paper, a less complex scheme is proposed which is

different from prior schemes. The aim is to design a Lloyd-

Max based quantizer with capabilities to minimize the infor-

mation loss due to the quantization process; this is equivalent

to maximizing the mutual information between the source and

the receiver after the quantization is accomplished. One of

the advantages of the Lloyd-Max quantizer [6], [7] is its

simplicity, easy of implementation. The main contribution of

the proposed scheme is the design of a quantizer of L-values

dealing not only with AWGN channels but also with Rayleigh

fading channels. We also extend this method to the special case

when the channel state information (CSI) is ignored; however,

when this information is available the scheme can easily be

incorporated. Analytical and experimental results show that

the proposed scheme outperforms the classical method which

is designed by minimizing the expectation E[(L − L̂)2].

The paper is structured as follows. In Section II, the

Lloyd-Max quantizer and some of its important features are

presented. Sections III and IV give an introduction of L-values

and mutual information respectively. Afterwards, Section V is

dedicated to the proposed design of the quantizer. Numerical

results and performance comparisons for illustration are pre-

sented in Section VI which is followed by a conclusion in

Section VII.

II. LLOYD-MAX QUANTIZER

Given a set Y , an input value y ∈ Y and a set of discrete

values Ŷ = { ŷj}Nj=1, an optimized quantizer

Q :

{

Y → Ŷ

y 7→ argminŷj (y − ŷj)
2

(1)

minimizes the mean-square quantization error (distortion)



D =

N
∑

j=1

∫

ℜj

(y − ŷj)
2 p(y) dy (2)

as much as possible by optimally selecting the output levels

{ŷj}Nj=1 and the corresponding input ranges {ℜj}Nj=1 with

N = 2b ≪ ∞ quantization levels for a given compression rate

b in [bits/symbol], where ℜj = (aj−1, aj ] for j ∈ {1, 2, ..., N}
with a0 = inf{Y } and aN = sup{Y }; p(y) is the probability

distribution of the input y.

The optimized quantized values of a Lloyd-Max quantizer

are estimated by setting ∂D
∂ŷ

= 0 and solving for ŷj; this gives

ŷj =

∫

ℜj

y p(y) dy

∫

ℜj

p(y) dy
. (3)

Similarly, the boundaries of the optimized quantization

regions can also be found by setting ∂D
∂aj

= 0 and solving

for aj . For ŷj+1 6= ŷj , this is

aj =
ŷj+1 − ŷj

2
. (4)

The quantized value in (3) is computed as the conditional

mean of its region, i.e., ŷj = E[y] when y ∈ ℜj . The

boundaries for the quantization regions {aj}N−1

j=1
are computed

by means of (4) to be the midpoint of the quantized values,

or in other words, to be the arithmetic average of the two

neighbouring quantized values.

To solve (3) and (4), a total of 2N − 1 variables have to

be found numerically, for which the Lloyd-Max algorithm is

suitable. The convergence of the algorithm has been proved

for a log-concave distribution p(y),
∫

ℜj
p(y) dy > 0, ∀j and

∫ aN

a0
p(y) dy = 1. In addition, the distortion function (2) must

also be smooth. Detailed proofs for convergence and for the

applicability of the algorithm can be found, for example, in

[8], [9] as well as in the original papers by Max [7] and Lloyd

[6].

III. L-VALUES DISTRIBUTION

Given a communications system y = ax + n where a is

the normalized Rayleigh fading factor, x ∈ {1,−1} is the

transmitted symbol with probabilities P(x) and power σ2
x =

Es

Ts
= 1, where Es and Ts are the signal energy and sampling

period respectively; n ∼ N (0, σ2
n) is the additive noise of

the channel with variance σ2
n = N0

2Ts
, the complementary a-

posteriori (APP) L-value is defined [10] by

L(x̂ = x|y) = ln

(

P(x = +1|y)
P(x = −1|y)

)

= 4a
Es

N0

y + L(x)

= Lcy + L(x), (5)
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Fig. 1. Probability distribution of L-values for (a) AWGN channel given in
(7), and (b) Rayleigh fading channel given in (9).

where x̂ is the estimated symbol at the receiver, Lcy =
L(y|x = ±1) is the soft output of the channel and L(x)
corresponds to the a-priori L-value at the source. Assuming

equally likely symbols x, the a-priori L-value is L(x) = 0 and

therefore L(x̂ = x|y) = L(y|x = ±1). If no misunderstanding

arises, hereafter L(y|x) will be referred to as just “L” for

simplicity of notation.

At the receiver, the sign of L corresponds to the hard

decision and its magnitude to the measure of its reliability.

This means that the probability of making a correct estimation

can be obtained in terms of |L| [1], which is

P(x̂ = x|L) = e|L|

1 + e|L|
. (6)

Finally, it can be noticed that the distribution of the L-

value [10] given in (5) is a superposition of two Gaussian

distributions N (± 1

2
σ2

L, σ
2
L) where σ2

L = 2aLc. Nevertheless,

the distribution for AWGN channels and the distribution for

Rayleigh fading channels have different behaviors. These dis-

tributions are essential for the quantizer design, and therefore

they are described in the next sections.

A. L-values Distribution for AWGN Channel

Assuming a = 1, the mean E[L(y|x)] = µL = 2/σ2
n is the

half of the variance var(L(y|x)) = σ2
L = 4/σ2

n; the distribution

p(L) is expressed as

p(L) =
1

2

1
√

2πσ2
L

(

e
−

(L+σ2
L
/2)2

2σ2
L + e

−
(L−σ2

L
/2)2

2σ2
L

)

. (7)

The distribution given in (7) is illustrated in Figure 1. It

depends on both the signal-to-noise ratio (SNR) of the channel

and the L-value. Moreover, a superposition of two Gaussian

distributions and the corresponding relation between the means

and the variances can be observed.



B. L-values Distribution for Flat Rayleigh Fading Channel

For the case of flat Rayleigh fading channel, the fading

amplitude in (5) has a density function p(a) = 2a exp(−a2)
with E[a2] = 1. The distribution of the L-values with ideal

channel state information (CSI) is

p(L) =
σn√
8π

∞
∫

0

(

e
−
(L−ξa2)

2

4ξa2 + e
−
(L+ξa2)

2

4ξa2

)

e−a2

da, (8)

with ξ = 2/σ2
n. This distribution is clearly dependent on

a. In this case, a different quantizer/dequantizer should be

designed for each possible value of a thereby occupying

additionally resources of the system, e.g., memory. In addition,

the CSI could also not be available on all the stages of a

communication system. Therefore, when no CSI is available,

the distribution of L-values must be approximated [11] by

considering E[a] =
∫

a
a p(a) da = 0.8862. This leads to

an approximated APP L-value Lcy ≈ 2

σ2
n
yE[a]. With this

approximation, the distribution of L-values becomes

p(L) =
σn∆

2

4E[a]
e

(

−
∆2σ2

nL2

4(E[a])2

)
[

√

8

π
e

(

− ∆2L2

8(E[a])2

)

+
∆L

2E[a]
erfc

( −∆L√
8E[a]

)

− ∆L

2E[a]
erfc

(

∆L√
8E[a]

)]

,

(9)

where ∆ =
√

σ2
n/(2σ

2
n + 1). The density p(L) in (9) is

illustrated in Figure 1. Unlike the distribution of L-values for

AWGN channels, the distribution of L-values for flat Rayleigh

fading channels is denser at lower |L| and is less susceptible

to |L|.

IV. MUTUAL INFORMATION

In a binary communication system, a source X with sym-

bols x ∈ {−1, 1} and probabilities P(x = ±1) conveys infor-

mation to a receiver. L ∈ R is the APP L-value determined at

the receiver in (5). The mutual information I(X ;L) measures

how much common information is contained in both X and L.

For this system, a general expression of the mutual information

[12] is

I(X ;L) = H(X)− H(X |L). (10)

The first term on the right-hand side of (10) corresponds to

the entropy of the source X , which for a binary source with

equally distributed symbols is H(X) = 1. The second term

measures the information conveyed by the source which does

not reach the receiver. Thus, the mutual information in (10)

can be writen as

I(X ;L) = 1− H(X |L) (11)

and the information loss H(X |L) is determined in terms of

the probabilities of the system by
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Fig. 2. Probability density function of the information loss p(HX|L),
assuming (a) AWGN channel and (b) Rayleigh fading channel without CSI.

H(X |L) =
∑

x∈{+1,−1}

∫ +∞

−∞

p(x, L)log2
1

p(x|L) dL, (12)

where p(x, L) is the joint probability between x and L;

p(x|L) denotes the conditional probabilities of the transmis-

sion. As indicated by (11), reducing the information loss

H(X |L) increases the mutual information I(X ;L). Meaning

thus that the quantizer can be designed either to maximize

I(X ;L) or to minimize H(X |L). This paper investigates the

last option.

V. QUANTIZER DESIGN

A. Quantizer Design for L-values

A Lloyd-Max quantizer for L-values is straightforward to

design. Examples for AWGN channel can be found in [2],

[3]. The quantized L-values {L̂j}Nj=1 and the boundaries for

the quantization regions {aj}N−1

j=1
are optimally chosen by

means of (3) and (4) respectively. For a general optimized

solution, the lower and upper boundaries of the quantizer

input muss be set to a0 = −∞ and aN = +∞. For AWGN

channels and Rayleigh fading channels, with or without CSI,

the distributions to consider in (3) are given in Section III.

These distributions satisfy the necessary conditions of Section

II for applying Lloyd-Max algorithm. In other words, this

quantizer is designed in such a way that I(L; L̂) is maximized

for a given compression rate b.

B. Quantizer Design Minimizing the Information Loss

The goal of this paper, it to design a quantizer capable of

reducing the mutual information loss due to the quantization

noise

IQ(X ;L) = I(X ;L)− I(X ; L̂), (13)
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Fig. 3. Optimum quantized values |yj | and quantization boundaries |aj−1|
[13], for N = 8 and AWGN channel, regarding the distribution of L-value
p(L) in (a) and the distribution of the information loss p(HX|L) in (b).

with L̂ = Q(L) as the quantized L-value. The mutual infor-

mation I(X ;L) is defined in (10) and the mutual information

after quantizing I(X ; L̂) is given by

I(X ; L̂) = H(X)− H(X |L̂). (14)

Assuming H(X) = 1 in (14), it can be seen that minimizing

IQ(X ;L) in (13) is equivalent to minimizing H(X |L̂) in (14).

Hence, to minimize the distortion of the mutual information

is equivalent to minimize the distortion

D = min
{L̂j}N

j=1,{aj}
N−1
j=1

E[(H(X |L)− H(X |L̂))2], (15)

with respect to L̂ by means of (2). Then, in order to implement

the Lloyd-Max quantizer introduced in Section II, we derive

the distribution of H(X |L) as follows.

The source X transmits the symbol x ∈ {Xi}1i=0 to the

receiver with a-priori probabilities P(Xi). The distribution

p(L) of an L-value at the receiver is given in Section III

for AWGN and Rayleigh fading channel with and without

CSI. Without any loss of generality, X0 is assumed to be

transmitted. The conditional probability of a transmission error

is P(X1|L) = Pe and the conditional probability of an error-

free transmission is P(X0|L) = 1−Pe, where Pe is determined

via (6), i.e., Pe = 1 − P(x̂ = x|L). Further, the probabil-

ities of an erroneous reception and an error-free reception

are P(X0, L) = (1 − Pe)p(L) and P(X1, L) = (Pe)p(L)
respectively. Substituting these probabilities in (12) gives

H(X|L) =
∫ +∞

−∞

(1− Pe)p(L)log2
1

1− Pe

dL+

∫ +∞

−∞

Pep(L)log2
1

Pe

dL, (16)
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Fig. 4. Optimum quantized values |yj | and quantization boundaries |aj−1|
[13], for N = 8 and Rayleigh fading channel without CSI, regarding (a) the
distribution of L-value p(L) and (b) the distribution of the information loss
p(HX|L).

and after factorizing p(L) and normalizing the average infor-

mation loss, the distribution of H(X |L) becomes

p(HX|L) =
p(L)HL

∫ +∞

−∞
p(L)HL dL

, (17)

where HX|L := H(X |L), just for simplicity of notation. HL =
H(Pe) denotes the entropy of the conditional probability of

an error transmission [10]. The distribution given in (17) is

depicted in Figure 2 for AWGN and Rayleigh fading channel

without CSI. It can be noted that in contrast to p(L) depicted

in Figure 1, p(HX|L) is barely dependent on the quality of

the channel. Additionally, it is denser around the unreliable

L-values, i.e., at the region where the mutual information is

lower (high entropy). Lastly, it is also noteworthy that the
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IQ(X;L) given in (13) considering (a) AWGN channel and (b) Rayleigh
fading channel.
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Fig. 6. The resulting BER comparison after combining L-values between
two cooperative receivers assuming AWGN channel [13], which is performed
by adding the non-quantized and quantized L-values using N = {2, 4, 8}
level quantizer based on p(L) and p(HX|L).

information loss is inversely proportional to the SNR and to

|L|.
Finally, the Lloyd-Max quantizer for L-values can be de-

signed by minimizing the mutual information distortion given

a compression rate b. With (3) and (4), {L̂j}Nj=1 and {aj}N−1

j=1

are optimally chosen. Due to L ∈ R, the boundaries a0 = −∞
and aN = +∞ are deduced. The distribution in (17) fulfills

the conditions in Section II required for the convergence of

the Lloyd-Max algorithm.

VI. RESULTS

In this section, we apply the proposed scheme and present

the results of the design of two quantizers for L-values

with their corresponding performances, in terms of mutual

information loss and bit error rate (BER).

A. Quantizers Design

In Section V the designs of two quantizers were detailed.

Both are based on the Lloyd-Max quantizer described in

Section II. The difference between them is the optimization

criteria, i.e., the distributions used in (2). For the quantizer

that optimizes L-values (Section V-A), the distribution imple-

mented is p(L). In the same manner, the distribution p(HX|L)
is considered for the quantizer that minimizes the information

loss (Section V-B). Both quantizers are compared to measure

the performance of the proposed strategy. As an example,

the results of these quantizers with N = 8 are illustrated

in Figures 3 and 4 for AWGN and Rayleigh fading channel

without CSI respectively. Only the positive quantized values

and quantization boundaries for any SNR in [-15,10] are

presented; the negative values can be obtained by symmetry.

The different limits of the vertical axes between (a) and

(b) must be noticed in each figure. In (a), the quantizer
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Fig. 7. The resulting BER comparison after combining L-values between
two cooperative receivers assuming Rayleigh fading channel [13], which is
performed by adding the non-quantized and quantized L-values using N =
{2, 4, 8} level quantizer based on p(L) and p(HX|L).

minimizes the expectation E[(L− L̂)2]. Conversely, in (b) the

expectation E[(H(X |L)−H(X |L̂) )2] is minimized, therefore,

the quantized values remain near L = 0, where (17) is mostly

concentrated. The quantizer for Rayleigh fading channel with

CSI is straightforward to design by means of computing p(L)
in (8) for a given ”a” before proceeding with the Lloyd-Max

algorithm.

B. Comparison of the Mutual Information Loss

The mutual information loss for each quantizer was com-

puted analytically. Figure 5 shows the performance of the

quantizers. The mutual information loss due to the quantization

noise, given in (13), is depicted in (a) for AWGN channels

and in (b) for Rayleigh fading channels. Two strategies are

compared. The dashed plots show the mutual information loss

due to the quantizer based on p(L), and the continuous plots

show the mutual information loss due to the quantizer based

on p(HX|L). It is clear, that the quantizer based on p(HX|L)
performs better than the quantizer based on p(L), independent

of the channel considered.

C. Comparison of the Bit Error Rate

An alternative to measuring the performance of each quan-

tizer in terms of BER is to simulate a wireless communications

system with one source and two cooperative receivers. For

instance, a source transmits a symbol to the receivers, and

afterwards, one receiver shares its L-values with the other.

In order to avoid extra cooperation time, the receiver does

not share its CSI. A BPSK modulation is assumed and the

channels from the source to each of the receivers are indepen-

dent but with same statistical characteristics. Y1 and Y2 are

the receivers and L1 and L2 their L-values respectively. The

receiver Y2 quantizes its received L-value, i.e., L̂2 = Q(L2),



and cooperates with Y1 by means of sharing its quantized L-

values. In Y1 the combination Lq = L̂2 +L1 is executed and

afterwards the hard decision is performed. Finally | Lq | is

compared with the symbol transmitted by the source in order

to compute the BER of Y1 after cooperation.

Several plots of the BER are depicted in Figures 6 and 7

for AWGN and Rayleigh fading channels respectively. The

performance of the quantizers with N = {2, 4, 8} levels is

evaluated. The N = ∞ plot is a benchmark representing the

ideal case of adding the unquantized L-values of both receivers

(or quantizing with an N = ∞ level quantizer).

As Figure 5, Figures 6 and 7 show that the quantizers based

on p(HX|L) distribution outperform the quantizers based on

p(L) distribution. The (N -1)-level quantizer based on p(HX|L)
performs close to or even better than the N -level quantizer

based on p(L); this allows us to save at least one bit on the

quantizer resolution. Furthermore, the 8-level quantizer based

on p(HX|L) performs close to the ideal N = ∞ case.

VII. CONCLUSION

In this paper, we present a scheme to design an optimum

Lloyd-Max based quantizer for L-values. The quantizer mini-

mizes the mutual information distortion due to the quantization

process while the L-value is being quantized. It is shown

that reducing the distortion based on the information loss

is equivalent to maximizing the mutual information between

the source and the receiver after the quantization process.

Therefore, the cost function for the Lloyd-Max algorithm is

developed in terms of minimizing the information loss. With

this scheme, the quantizers are straightforwardly designed for

AWGN channels as for flat Rayleigh fading channels. We have

compared the performance of these two types of quantizers,

which was done in terms of both mutual information loss

and BER. The special case without CSI was considered,

however, the case with available CSI is also straightforward

to implement. The quantizer based on p(HX|L) outperforms

the quantizer based on p(L) for both AWGN channels and for

Rayleigh fading channels. Also worth mentioning is the fact

that, for a given distortion in the sense of the rate-distortion

theory the compression rate b can be further minimized by

applying a source-coding algorithm to the output of the

quantizer.
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